
Abstract. Long-range electronic coupling of local donor
and acceptor sites is formulated in the context of thermal
and optical electron transfer and then illustrated with
examples based on electronic structure calculations. The
relationship of the calculated results to available exper-
imental kinetic and optical data is discussed in detail.
The influence of nuclear modes on the magnitude of the
coupling (i.e., departures from the Condon approxima-
tion) is investigated in terms of both discrete molecular
modes and solvent modes, and a general expression is
presented for the modulation of the superexchange
tunneling gap by motion along the electron transfer
reaction coordinate.
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Introduction

Long-range electron transfer (ET) between local donor
(D) and acceptor (A) sites (e.g., charge separation, CS,
of the type DA fi D+A)) is of central importance in
many areas of chemistry and related disciplines [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11,12, 13]. A continuing challenge for
theoretical chemistry is the need to characterize the
factors controlling the strength of D/A coupling and its
quantitative role in the mechanism of overall ET kinetics
[7, 8, 9]. ET occurs in a rich variety of contexts: thermal
and optical, intramolecular and intermolecular, homo-
geneous and interfacial. ET kinetics between discrete D
and A sites is also closely related to electronic transport
in conductive junctions [3]. The field of ET is especially
attractive for theoretical study because of the availability

of unified theories which may be readily adapted to the
many variants noted earlier.

The focus of the present work is the strength of D/A
coupling, as represented by the effective Hamiltonian
matrix element, HDA. Before proceeding to the details
of HDA, however, we first establish the kinetic context
by presenting some standard models for ET rate con-
stants, kET, in the limit of nonadiabatic ET, noting also
various extensions of theory which may be required to
accommodate ET processes of current experimental
interest. We then discuss, the formulation of the space
of electronic states needed to represent an ET process
and the specification of states within this space. In the
remaining sections, specific expressions for HDA and
the factors controlling its magnitude are analyzed and
illustrated in terms of the results of sample calculations.
These factors include the chemical, geometrical and
electronic structure of the ‘‘solute’’ DBA (comprising
the D and A groups and any intervening ‘‘bridge’’, B)
and the response of the surrounding medium
(‘‘solvent’’).

Kinetic context

The ET rate constant, kET, is determined by the ener-
getics of the ET system and the strength of D/A elec-
tronic coupling (HDA). The energetics and the coupling
may be linked in varying degrees through their joint
dependence on the nuclear modes of the solute and
surrounding medium. The coupling of solute and med-
ium is often assumed to be linear; however, the conse-
quences of nonlinearity can be significant [12, 14, 15].
Matyushov and Voth [14] have shown recently that
nonlinear coupling (due, for example, to distinct initial
and final state solute polarizabilities, a) may have an
appreciable qualitative as well as quantitative influence
on ET kinetics and associated aspects of optical ET
lineshapes, and they have provided compact new models
which take account of the nonlinear behavior.
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Matyushov and Newton [15] have discussed the role of
nonlinearity arising from the combined effects of
polarizability shifts and delocalization of initial and final
states in controlling the solvent dependence of optical
ET lineshapes for coumarin-153. In the present account,
with focus on D/A coupling, we do not explicitly con-
sider nonlinear effects (although the detailed electronic
structure calculations involving solvation do not impose
strict linearity), choosing rather to illustrate some
important concepts in terms of linear models. Reference
to the role of solute polarizability is made, however, in
Sects. 3 and 6 in connection with analysis of the influ-
ence of solvent on HDA magnitudes.

To provide a point of reference for appreciating the
kinetic role of HDA, we consider a useful limiting
expression for kET which is valid for thermal ET within
the nonadiabatic (weak D/A coupling) transition-state
approximation in the case of classical (high-temp-
erature) harmonic nuclear motion [4, 5, 6, 7, 8]:

kET ¼ 2pH2
DA

�
�h

� �.
4pkkBTð Þ1=2 exp� DGy

.
kBT

� �h i
;

ð1Þ

DGy ¼ DG0 þ k
� �2.

4k: ð2Þ

The form of Eq. (2) is easily extended to the case of
optical ET [10].

Equations (1) and (2) highlight the central impor-
tance of two free-energy quantities (the reaction exo-
thermicity, DG0, and the reorganization energy, k) and
the coupling element HDA. The activation free energy,
DG�, is related to DG0 by the well-known Marcus qua-
dratic free-energy expression (Eq. 2) [11]. Equation (1)
superficially resembles an Arrhenius rate constant
expression, with a Boltzmann activation factor and a
prefactor (the first two factors in Eq. 1), which displays
only weak temperature dependence (T)1/2). Note, how-
ever, that any entropic contributions to DG� belong
properly to the Arrhenius prefactor, a situation which
must be taken into account in attempts to extract HDA

values from experimental prefactors [12]. In spite of the
deceptively simple factorizable form of kET in Eq. (1),
HDA and DG� are not necessarily fully independent
quantities, as noted earlier, and some of their possible
interrelationships will be examined later. HDA, of
course, implies a particular pair of states, the initial and
final ‘‘diabatic’’ states in a thermal ET process [8]. We
defer the discussion of this topic until the next section.

Energetics due to nuclear modes

In the classical limit for nuclear motion (Eq. 1) all
nuclear modes are treated on the same (high-tem-

perature) footing. It is often desirable to separate the
modes into low-frequency and high-frequency sets,
treated, respectively, classically (hm>kBT) and quan-
tum mechanically (h m& kBT), where m is the frequency
of a given mode. For separable coordinates (e.g.,
harmonic oscillators) the total reorganization k may be
expressed as the sum

k ¼ klf þ khf; ð3Þ

where in general klf and khf may each have significant
contributions from both solute (i.e., the DBA system)
and medium modes. Typically, however, klf and khf are
dominated, respectively, by medium (or solvent) and
solute (so-called inner-shell) modes, and in the follow-
ing, we use the notation ks ” klf and kin ” khf. Reorga-
nization energy is the consequence of a shift in
equilibrium coordinates in the course of an ET process.
For a discrete harmonic mode, q, with force constant kq
and shift Dq,

kq ¼ kq Dqð Þ2
.
2: ð4Þ

The analog for continuum polarization medium
modes has been given by Marcus [11]:

ks ¼ 1=e1 � 1=e0ð Þ 1=8pð Þ
Z

Vs

�D Dqð Þj j2d3r; ð5Þ

where e¥ and e0 are the optical and static medium
dielectric constants, Vs is the volume occupied by the
medium, and D is the electric displacement vector, taken
as a linear functional of the shift in solute charge density
(Dq) in the ET process. The Franck–Condon control of
nonadiabatic ET leads to the activation energy DG� gi-
ven in Eq. (3), the height of the minimum-energy
crossing point of the initial and final state energies in the
harmonic approximation, relative to the initial state
minimum energy.

We now represent the energetics relevant to ET in
terms of energy profiles for initial and final diabatic
states along a reaction coordinate, as illustrated in Fig. 1
for several types of ET (or hole transfer, HT) process,
both thermal and optical. The distinction between ET
and HT is considered later. These free-energy surfaces
serve as effective potential-energy surfaces, Vi (initial)
and Vf (final) [13]:

Vi ¼\q Kj jq[=2; ð6aÞ

Vf ¼\q � Dq Kj jq � Dq[
�
2þ DG0; ð6bÞ

where the vector |q> (and its equilibrium shift, |Dq>)
includes all the harmonic modes, and K is the force
constant matrix. In this notation,

k ¼\Dq Kj jDq[=2: ð7Þ
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Formally, Eqs. (6a, 6b) and (7) can be understood to
include both the discrete and the continuum modes
discussed previously. The quantity which controls the
ET kinetics is the vertical energy gap between Vi and Vf,
and we adopt this as the reaction coordinate, g (see also
Refs. [13, 16]):

g ¼ Vf � Vi ¼ �\Dq Kj jq[þ kþ DG0: ð8Þ

If we define the minimum-energy value of Vi in q
space (at jq>=jq min(g)>), subject to the constraint of a
particular value of g, a straight-line path lying along the
jDq>direction is obtained [8],

qmin gð Þ[¼ kþ DG0 � g
� ��

2k
� ��� ��Dq[: ð9Þ

Along this path, Vi and Vf may be re-expressed as
harmonic functions of the single coordinate g:

Vi ¼ kþ DG0 � g
� �2.

4k; ð10Þ

Vf ¼ k� DG0 þ g
� �2.

4kþ DG0: ð11Þ

Any linear function of g can serve equally well as a
reaction coordinate as long as all the coordinates

contributing to the collective coordinate g are globally
harmonic (i.e., with the same force constant matrix for
initial and final states, as in Eq. 7). Even in the non-
harmonic case, one may still define g as the vertical en-
ergy gap Vf – Vi, but g will no longer be linear in jq>,
in contrast to Eq. (8). In this case (discussed in detail in
Ref. [14]), Vi and Vf are not quadratic in g, but the
relationship noted by Tachiya [17],

Vf gð Þ¼Vi gð Þ þ g; ð12Þ

remains valid in general, indicating clearly that at a gi-
ven value of g, Vi and Vf have the same curvature with
respect to g, irrespective of the functional form of Vi and
Vf.

Extension of the classical nonadiabatic transition-state
theory framework

The activation free energy DG� in the classical harmonic
case (Eq. 2) corresponds to Vi at the diabatic crossing
(see examples in Fig. 1), where g=g�=0. Equation (1),
which treats the transferring electron quantum
mechanically (as reflected by the matrix element HDA,
sometimes described as a manifestation of ‘‘electron
tunneling’’), may also be extended to include quantal
nuclear modes. One approach maintains the form of
Eq. (1) but employs semiclassical generalizations of DG�

and the prefactor [18]. A popular current approach due
to Jortner and Bixon [19] uses another semiclassical
model, in which specific vibronic analogs of Eq. (1), kvw,
are superposed,

kET ¼
X

v;w

Pv kvw; ð13Þ

where v and w are the initial and final vibronic quan-
tum states (products of electronic and harmonic
vibrational states) and Pv is the probability for initial
state v (e.g., given by a Boltzmann factor for a ther-
mally equilibrated initial state); kvw is obtained from
the classical expression (Eq. 1) by the following trans-
formations [19]:

H2
DA ! H2

DASvw; ð14aÞ

k! kS; ð14bÞ

DG0 ! DG0
v;w ¼ DG0 þ Dnvw hmð Þ; ð14cÞ

where Svw is a vibrational Franck–Condon factor and
Dnvw is the change in vibrational quantum number, n, in
the ET process (in Eq. 14c we assume a single effective
quantum mode with frequency m; in this case, Svw

depends on the parameter kin/hm) [19].

Fig. 1. a Schematic representation of optical and thermal electron
transfer (ET), corresponding, respectively, to the vertical transition
with excitation energy hm and passage through the transition-state
(or crossing) region. b Sequence of photoinitiated ET charge
separation (CS) from a locally excited state, followed by charge
recombination (CR) back to the ground state. The CS,CR notation
is generally limited to cases where the donor (D) and acceptor (A)
sites are initially charge neutral (as drawn)
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The right-hand side of Eq. (14a) implies the Condon
approximation [20], in which a fixed value of HDA is
factored out of the full vibronic matrix element. For
thermal ET, HDA should be evaluated at the transition-
state configuration of the system. In the classical limit,
this occurs at the minimum-energy diabatic crossing
point, g� (Fig. 1). When nuclear tunneling is present, the
reaction is not confined to a single point along g, and a
suitable root-mean-square value of HDA may be em-
ployed as an alternative to evaluating HDA at g�. Some
examples of non-Condon behavior are considered later.
Equation (13) lacks the transparent Arrhenius-like
structure of Eq. (1), but of course may be subjected to
Arrhenius analysis, yielding an activation energy which
reflects a reduced barrier (relative to the classical limit)
due to nuclear tunneling. However, for tunneling at fi-
nite temperatures this effect is somewhat offset by a
negative effective activation entropy in the prefactor
[21].

Returning to the classical nuclear model given by
Eq. (1), we note that the prefactor may be recast as
(jel)(meff), where jel is the electronic transmission factor
and meff is the frequency of the effective mode which
carries the system through the crossing at the transi-
tion state [8, 18]. In the nonadiabatic limit (Eq. 1),
jel>1. As the coupling element HDA increases in
magnitude (other quantities being kept constant), the
adiabatic limit within the transition-state theory (TST)
framework will eventually be reached (jel�1), as may
be described, for example, in terms of the Landau–
Zener model [21]. However, the ‘‘degree of adiabatic-
ity’’ is clearly a joint property of several parameters
(i.e., k, meff, and T as well as HDA). Furthermore, as
nuclear tunneling is introduced, effective coupling
elements will tend to be reduced in magnitude (e.g., as
in Eq. 14a, where Svw £ 1), thus bringing the ET
process closer to the nonadiabatic limit [8, 19]. On the
other hand, when the adiabatic limit is approached,
some diffusional process (e.g., solvent dynamics) may
become the rate-determining step, thus requiring one
to go beyond the TST [7, 8, 19]. A further point to
note is that as HDA increases in magnitude, the adi-
abatic barrier height will be reduced as a result of
avoided crossing at the transition state; for example,
for a thermoneutral process (DG0=0), we find [18]

D Gy ¼ k=4� HDAj j þ H2
DA

�
k : ð15Þ

The variation of kET with D/A separation, rDA, is of
great mechanistic interest [1, 2, 3, 4, 5, 6, 7, 8, 9]. Pri-
mary focus is usually placed on the expected (see later)
exponential decay of HDA with respect to rDA. However,
intersite Coulombic contributions to DG0 may also have
a significant influence on the rDA dependence of kET, a
factor which must be carefully taken into account in
analysis of experimental kinetic data [22, 23]. Further-
more, rDA must be recognized as an effective quantity
with no unique definition [8]. The next section offers a

theoretical definition based on the centroids of the D
and A states in a given ET process.

Finally, we note that in contrast to the mechanism
embodied in Eq. (1), in which B-mediated electron (or
hole) tunneling occurs directly from the D to the A site,
alternative sequential mechanisms are possible, in which
shorter electron tunneling steps involving the temporary
occupation of intermediate B sites by the transferring
electron are linked by overall diffusive hopping, thus
yielding a relatively weak overall dependence of kET on
rDA [24].

Electronic spaces and states

The foregoing discussion of ET kinetics presumes a
knowledge of the relevant electronic states, either the
charge-localized initial and final diabatic states, the
DBA, D+BA), etc., ‘‘valence-bond structures’’ intro-
duced earlier, or the corresponding adiabatic states, the
eigenstates of the electronic Hamiltonian. In typical
situations, the diabatic states are the natural basis for
treating thermal ET, whereas the adiabatic states, cou-
pled by the transition dipole moment, are employed for
analysis of optical ET [8, 25]. Owing to mixing via HDA,
the adiabatic and diabatic energy profiles will be distinct,
an effect suppressed for simplicity in Fig. 1.

We now consider electronic spaces spanned by ei-
genstates of the electronic Hamiltonian. The minimum-
state space suitable for representing one or more thermal
ET processes of interest is one which provides an ade-
quate basis for the relevant charge-localized diabatic
states (represented by the abbreviated D, A notation).
As a physically appealing, operational definition of such
diabatic states we adopt the criterion underlying the
generalized Mulliken–Hush (GMH) model [8, 26, 27,
28], whereby the diabatic states are those which are
diagonal with respect to the component of the dipole
moment operator along the charge-transfer direction
(chosen, for example, as the direction of the adiabatic
dipole moment charge associated with a given ET pro-
cess). Related analysis is given in Refs. [29, 30].

This criterion gives the maximally charge localized
states. In many cases, a two-state space suffices (denoted
later as the two-state approximation, TSA) for repre-
senting the desired D and A states. Rust et al. [28] have
recently discussed a quantitative criterion for assessing
the adequacy of the TSA relative to an expanded mul-
tistate implementation of the GMH model, and related
results have been reported [27, 31]. The TSA proves to
be sufficient for the cases dealt with in the following
discussion, and the key GMH relationships can be
compactly expressed as follows:

Hd
DA ¼ la

12DEa
12

�
Dld

DA; ð16Þ

erDA � Dld
DA ¼ Dla

12

� �2 þ 4 la
12

� �2h i1=2
; ð17Þ
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where the superscripts d and a are included to emphasize
the distinction between the diabatic (d and a) and adi-
abatic (1 and 2) states quantities in the TSA framework,
Dl corresponds to the dipole moment shift, DEa

12 and la
12

are the adiabatic vertical transition energy and transition
dipole moment, and rDA provides a useful definition of
effective D/A separation, which does not require ad hoc
assumptions based on independent structural data.
Equation (17) makes clear that Dld

DA (and hence rDA)
may be considerably larger than the corresponding
adiabatic quantity Dla

12, which, for example, may be
obtained from Stark spectroscopy [32].

Equations (16) and (17) offer a compact prescription
for converting adiabatic state information (obtained, for
example, from quantum chemical configuration inter-
action, CI, calculations or from experimental spectro-
scopic information) into the diabatic quantities involved
in models for kET (e.g., Eq. 1). Estimates of rDA are
required in formulating the distance dependence of kET
due to HDA, ks, and DG0, as noted earlier.

A great advantage of the GMH approach is its
applicability to arbitrary system configurations (both
with respect to solute and with respect to medium
coordinates), thus making it valuable for assessing the
sensitivity of HDA to various coordinates of interest
(i.e., departures from the Condon approximation).
Thus the GMH model is equally applicable to the
resonant case, as in thermal ET, where the D and A
levels at the transition state are equal and
HDA¼DEa

12

�
2 and the nonresonant case, as in optical

ET, where the photon energy compensates the mis-
match in D and A energies.

Before proceeding to consider specific quantum
models for HDA in molecular systems, we address
additional factors bearing on the choice of an appro-
priate electronic space. This space should be suitably
flexible in allowing the states involved in ET to re-
spond via polarizability to influences such as coordi-
nate fluctuations and external fields. The importance
of the change in a (Da) accompanying the ET process
has been emphasized in Refs. [14, 15]. In one ap-
proach to sampling a variety of solvation situations
[15], a fixed two-state space (e.g., based on vacuum
solute states) may be supplemented by polarizability
parameters which capture that part of the initial and
final state polarizabilities not implicitly included in the
two-state electronic model. In the examples considered
later, an in situ approach is taken, in which a calcu-
lation carried out using a suitable CI basis yields a
two-state GMH model specifically adapted to each
solute/solvent system.

Aside from the purely electronic issues noted earlier,
one must of course bear in mind the larger vibronic
context. The Condon factorization entailed in kET as
given in Eq. (1) is often a viable approach, which still
permits variations in HDA to be examined, but in some
cases the overall vibronic context must be considered
[33, 34].

Models for HDA

Pathway models

When the D and A groups in a DBA ET system are
relatively weakly coupled to the B, a number of per-
turbative expressions are available for modeling HDA in
the case of resonant D and A levels (ED/A ” ED=EA, as
required in thermal ET) [35]. In superexchange B-
mediated tunneling a particular sequence of virtual
intermediate B states for the tunneling charge defines a
‘‘pathway’’. The familiar nearest-neighbor (NN) path-
way of McConnell yields the following picture for a
homologous B with n states in a linear sequence [36]:

HDA ¼ TDBð Þ tBB0=Dð Þn�1 TBA=Dð Þ; ð18Þ

where TDB and TBA are the NN ‘‘hopping integrals’’
linking D and A, respectively, to the terminal sites of the
B, and tBB¢ is the hopping integral linking each of the
n)1 NN pairs of B sites (we assume one B state per site),
D is the vertical energy gap between ED/A and the energy
of the diabatic B states (the so-called tunneling gap or
effective tunneling barrier), and in the perturbative limit,
T/D, t/D�1. While a number of other pathways are
possible, which when superposed may yield appreciable
interference, either constructive or destructive [37, 38,
39, 40, 41, 42], the simple expression in Eq. (18) reveals
important qualitative features.1 The predicted expo-
nential dependence on the number of B units (n) yields
an expression for the conventional exponential decay
coefficient, b:

b ¼ �2 ln tBB0=Dj j= Drð Þ; ð19Þ

where b is defined by

HDAj j2 / exp �b rDAð Þ ð20Þ

and rDA is assumed to be a linear function of the mean
‘‘length’’ of each B site, Dr. The b coefficient in Eq. (20)
pertains to only one of the factors in Eq. (1) and,
as noted previously, should be distinguished from the
decay parameter (often also denoted as ‘‘b’’) relevant
to the overall rate constant [22].

Equation (18) also reveals that any fluctuation influ-
encing the magnitude of T, t, or D may result in non-
Condon behavior of HDA. Such an effect may be
expected for modes directly affecting orbital overlap
(e.g., torsional modes). More subtle effects due to vari-
ations in D are considered later.

A heterogeneous analog of Eq. (18) is straightfor-
wardly obtained:

HDA ¼ TDB1ð Þ
Yn�1

j¼1
tBjBjþ1

�
Dj

� �
" #

TBnA=Dnð Þ ; ð21Þ

1The left-hand sides of Eq. (2.55) in Ref. [38] and Eq. (4.16) in
Ref. [39] are in error and should be replaced by their reciprocals
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where Dj is the gap involving the jth B site, and the
hopping integrals may be distinct for each NN pair.

Detailed ab initio quantum chemical assessment of
Eqs. (18) and (21) using site-localized basis sets reveals
that for quantitative purposes, the single NN pathway
model may be grossly in error by comparison with exact
HDA values calculated independently [37, 40, 41, 42].
Nevertheless, the single pathway form may be very
useful in fitting trends in HDA when the T, t, and D
parameters are defined as suitable effective quantities
[41, 43].

An example of two competing pathways, corre-
sponding, respectively, to ET (via intermediate excess-
electron B states) and HT (via intermediate ionized B
states), is illustrated schematically in Fig. 2. Here, the
D, A, and B sites may be taken as components of
metal–ligand complexes in bimolecular contact, and
the various charge-localized states are distinguished in
terms of orbital occupations. As the large gaps be-
tween D/A and B (required for the virtual states in the
perturbative model) are reduced, the probability of
charge injection onto the B (i.e., creating real inter-
mediate states of measurable lifetime) increases, and
ultimately a sequential hopping mechanism may be-
come operative.

The possibility of extending the superexchange ap-
proach to the nonresonant situation, where ED „ EA, as
in optical ET, has been discussed in the context of the
Mulliken–Hush model [25], leading to a generalized
definition of the effective tunneling gap (D). The result-
ing implications for non-Condon behavior have been
considered in Refs. [5, 35, 38, 39]. It should be noted,
however, that this analysis was limited to a single reac-
tion coordinate.

Quantum chemical evaluation

Evaluation ofHDA, for example, using the GMH model,
may be carried out on the basis of quantum chemical
calculations (self-consistent field, SCF or CI ) for the
DBA systems, either in a vacuum or in a surrounding
polar medium. For large organic aggregates the all-
valence semiempirical INDO/s (developed by Zerner
et al. [44]) and AM1 models [45] are very useful, and the
INDO/s model also gives access to inorganic and orga-
nometallic complexes [46, 47]. It is important to validate
the performance of the semiempirical methods by com-
parison with ab initio results. In a number of cases
agreement to within 25% has been observed [43, 46].
Generally, reasonable agreement between INDO/s [47]
and ab initio [48] results for metallocene/metallocenium
HDA values was found, although the comparison here is
complicated by the fact that different metal–carbon
bond lengths were used in the two sets of calculations.

D/A coupling mediated by organic spacers

Calculated distance dependence

The sensitivity of D/A coupling with respect to details of
electronic structure are illustrated here for several fam-
ilies of DBA systems. The selection of systems is moti-
vated in part to facilitate contact with results based on
experimental kinetic data, especially that obtained from
electrochemical studies involving self-assembled-
monolayer film-modified electrodes [49, 50, 51]. The
calculated decay coefficient (b) of HDA (Eqs. 19, 20) for
several homologous radical cation, (DBA)+, and anion,
(DBA)), systems are presented in Table 1, based on the
D, B, and A moieties depicted in Fig. 3. The calculated
results were obtained from INDO/s SCF/CI calculations
analyzed in terms of the GMH model (Eq. 16) [43, 52].
While ferrocenyl D and A groups are most directly re-
lated to some of the systems studied experimentally, it is
also of interest to compare the ferrocene (Fc) results
with those based on the model D/A CH2 group [43],
which possesses the same carbon hybridization (sp2) as
the cyclopentedienyl (Cp) carbon atoms which link the
Fc moieties to the spacers. Indeed, Fc and CH2 are seen
to yield very similar b values, as do also the corre-
sponding radical cation and anion systems.

It should be emphasized that while there is no con-
straint requiring the quantum calculations to yield exact
exponential decay with rDA, in fact for all the homolo-
gous systems considered, the numerical results adhered
very closely to exponential behavior, consistent with the
simple NN model given in Eq. (18).

As expected, a more gradual falloff (smaller b value) is
found for conjugated unsaturated spacers relative to the
alkane spacers (oligomethylene, OM). More interesting
are the variations among the different unsaturated
spacers. For planar conformations, incorporation of
phenylene (P) groups into the spacer (oligo-p-phenylene-
thynylene, OPE or oligo-p-phenylenevinylene, OPV)

Fig. 2. Schematic representations of thermal bridge-mediated
charge transport of the ‘‘electron’’ (top, left to right) and ‘‘hole’’
(bottom, right to left) type, illustrated for the case of intermolecular
ET between two metal/ligand (M/L) complexes, where D ” Ml,
B ” Ll...Lr, and A ” Mr. The intermediate states for the hole and
electronic processes involve, respectively, charge localization based
on the filled (‘‘valence’’) and empty (‘‘conduction’’) bands of the
bridge. When the energy gaps separating the common (resonant)
D/A level from those of the bridge (taken here as equal, as in a
homologous spacer) is large relative to the magnitude of coupling
between D and A groups and the bridge, coherent (superexchange)
tunneling occurs between D and A, and the intermediate bridge
states are ‘‘virtual’’. As the gaps become smaller, the residence
lifetimes of the excess charge on the bridge sites increases, leading
eventually to a conventional sequential hopping process from
D to A
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leads to a modest increase in b relative to the polyene
reference (oligovinylene, OV). The b values for planar
OPEandOPVspacers arequite similar, indicating that the
‘‘extra’’ p bonds in the triple-bonded systems (OPE) are
not strongly involved in the superexchange tunneling. It is
also seen that methoxy substituents on the OPV spacers
(these or other alkoxy substituents are commonly em-
ployed in experimental studies [51]) has little effect on b.

Since the intrinsic barrier for rotation about single
linker bonds in the OPE spacers is quite small (around
kBT at room temperature), departures from the planar
reference framework geometry may be appreciable [8,
43]. Root-mean-square HDA values based on random
torsion angles (h, as in Fig. 3) for the phenylene groups
yield a larger b value (around 0.5 Å)1), and similar re-
sults (6% less) are obtained when the averaging is
weighted by Boltzmann factors based on barriers of
0.6 kcal mol)1 for each torsional degree of freedom.

Although the tunneling through the unsaturated
spacers is dominated by the p-electron manifolds, it is by
no means negligible for orthogonal conformations of
adjacent moieties [43]; for example, for OPE spacers, the
effective hopping integral (t) between adjacent orthog-
onal PE groups (involving a hyperconjugative mecha-
nism) is about one third of the corresponding value for
planar groups. When all the PE groups are twisted 90�
with respect to the p plane of coplanar CH2 D and A
groups, thus forcing the tunneling to be mediated by the
spacer r-orbital manifolds, the resulting b value is
indeed quite similar (around 1.0 Å)1) to that found for
the saturated OM spacer.

Hole versus electron tunneling

The GMH analysis yields overall HDA values which
implicitly may involve superposition over many superex-
change pathways, including the limiting cases of purely

ETorHT (Fig. 2).While onemight expect charge transfer
in radical cation, (DBA)+, and anion, (DBA)), systems to
be strongly dominated, respectively, by hole and electron
tunnellng, a detailed analysis reveals a much less clearcut
distinction. Table 2 displays estimated gaps for (virtual)
hole and electron injection into OPE(1) and OPV (1)
spacers in the radical cation systems, based on INDO/sCI
calculations including single excitations from the two
lowest-energy configurations to configurations of pre-
dominantly hole or electron type. These single excitations
can be summarized in the following shorthand notation:

DBAþ; DþBA ! DBþA hole transferð Þ;
DBAþ; DþBA ! DþB�Aþ electron transferð Þ:

The calculated gaps in Table 2 give the energy of the
lowest charge-injected B state relative to the resonant
initial and final diabatic states (the calculations involved
10–20 CI basis configurations). The gaps are large en-
ough to support the use of perturbative superexchange
analysis, even though they are considerably smaller than
the corresponding gaps (several electron volts) inferred
from analysis of saturated hydrocarbon spacers [37, 38,
39]. The OPE and OPV gaps are comparable (the
slightly larger OPV gap correlates qualitatively with the
slightly larger b value, Table 1), and we also find that the
gap for electron tunneling in the radical cation systems is
only 0.1–0.2 eV larger than the hole tunneling gaps.

Alternative hole states

The previous analysis of coupling involving Fc D and A
sites was based on ground hole states within the TSA.
However, it is well known that the ground hole state of
the isolated ferrocenium is degenerate in D5 point-group
symmetry, corresponding to holes of primarily 3dx2�y2

and 3dxy character. The fate of this degeneracy when Fc

a[86, 87,88]; based on Mulliken–Hush [25] analysis of optical data
bHole ground states are localized in the 3dx2�y2 Fe orbitals, where z
is the Fc axis and x is the long axis of the bridge
cBased on measured rate constants
dRef. [56]
eRef. [55]

fThe two ortho hydrogens nearest to the D attachment site of the
first phenylene group were replaced with methoxy groups
gRef. [51]; b<0.1 Å)1, based on Arrhenius prefactors
hRef. [50]; based on Arrhenius prefactors for large rDA (>10 Å);
for small rDA ( £ 10 Å),a falloff of distance dependence (i.e.,
effective b value) is observed [49]

Table 1. Sensitivity ofHDA decay to donor/acceptor (D/A) and
bridge (B) type in (DBA)± systems.Detailed structures are given in
Fig. 3. Oligovinylene (OV), oligo-p-phenylenevinylene (OPE), oli-

go-p-phenylenevinylene (OPV), oligomethylene (OM), ferrocene
(Fc). Table 1 of Ref. [52], reprinted with kind permission. Copy-
right 2003, American Chemical Society

D/A B b (Å)1) Exp

Conformation Calculated

Radical cations Radical anions

CH2 OV Planar 0.31 0.32 ‡0.2a
CH2 OPE Planar 0.39 0.43 0.4c,d, 0.6c,e

Randomized 0.51 0.54
Fcb OPE Planar 0.36 –
CH2 OPV Planar 0.43 0.46 –g

OPV Planar–CH3O–subst.f 0.46 –
Fcb OPV Planar 0.42 –
CH2 OM Staggered 0.83 1.00 0.9±0.1h
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hole states are incorporated into spacer-linked DBA
systems can have significant consequences for the D/A
coupling strength (HDA) [46, 47, 52, 53]. To broaden the
perspective here, we also consider a variant of Fc in
which the CpFe moiety is replaced by the cyclobutadi-

ene–Co moiety (denoted as CbCo), a replacement which
is isoelectronic as far as the metal atom and ligand p
electrons are concerned. This complex (Fig. 4), abbre-
viated as CbCoCp, has been considered by Harrison
et al. [54] for its potential role in the design of square-
planar conductive arrays.

In contrast to Fc, the 3dx2�y2 /3dxy degeneracy is
broken in the isolated CbCoCp complex (and its tetra-
phenyl-substituted derivative, (Cbu4CoCp, denoted as
Cb¢CoCp). As indicated schematically in Fig. 5, this
splitting can be understood in terms of the local C4v

symmetry of the CbCo moiety: in this symmetry, the
only interactions between the Cb p orbitals and the Co
3dx2�y2 and 3dxy orbitals involve the antibonding orbital
of Cb (p*), which pushes the 3dx2�y2 orbital (b2 repre-
sentation in C4v) below the 3dxy orbital (b1 representa-
tion) [46, 47, 52]. The significance for electron (or hole)
tunneling is clear, since the resulting hole state (3dxy-
like) cannot delocalize effectively onto the Cb carbon
atoms, which are the sites of attachment in extended
CbCoCp arrays. Some energy splittings for the mono-
nuclear complexes are displayed in Table 3. These
splittings, and those for the local hole states in the bi-
nuclear systems in Table 4, are based on restricted-open-
shell INDO/s SCF calculations. While u-substitution
(Cb fi Cb¢) reduces the splitting by nearly a factor of 2,

Fig. 3. Molecular components of the DBA systems for which
calculations were carried out. Three types of unsaturated bridges
were employed: oligovinylene (OV), with a vinylene unit (V) plus n
V repeat units (n=1,3,5); oligo-p-phenylenethynylenes (OPE), with
an ethlynylene unit (E) plus n PE repeat units n=0–4); oligo-p-
phenylenevinylene (OPV), with a vinylene unit (V) plus n PV repeat
units (n=0–4). The saturated oligomethylene (OM) bridges (in
fully staggered conformation) are based on a (CH2)2 unit plus n
additional (CH2)2 repeat units (n=1–4, the number of repeat units
given in the caption for Fig. 2 in Ref. [52] is in error by a factor of
2). To keep the notation uncluttered, the CH bonds in the
cyclopentadiene (Cp) rings of the ferrocenyl (Fc) D/A groups have
been omitted

Table 2. Calculated energy gaps for injecting holes or electrons
onto OPE(1) and OPV(1) bridges (respectively, D+BA fi
DB+Aor D+BA fi D+B)A+)

D/A B DE (eV)a

Hole Electron

Fc OPE(1) 1.6 1.8
Fc OPV(1) 1.6 1.7

aEstimates based on restricted single excitation configuration
interaction calculations (see text)

Fig. 4. Cyclobutadiene (Cb)/Cp Co sandwich complex (isoelec-
tronic with Fc as far as relevant valence molecular orbitals are
concerned). The cases R=H and R=u are considered in Sect. 5
and Tables 3 and 4

Fig. 5. Splitting of the Co 3dx2�y2 /3dxy degeneracy in CbCoCp

due to mixing with the p* orbital of Cb

314



it remains significant relative to kBT at room tempera-
ture, indicating a small thermal population of the state
expected to yield the strongest B-mediated D/A cou-
pling. Access could perhaps be achieved via photoexci-
tation.

Examples of the magnitude of HDA for 3dx2�y2 and
3dxy hole states are shown in Table 4, along with the
state splittings. For the Fc cases, linkage to the B
[OPE(1) or OPV(1), as defined in Fig. 3] yields a split-
ting of around 2kBT at room temperature, with the
strongly coupled 3dx2�y2 hole state as the ground state.

For the biphenylene-linked CbCoCp units (formed by
the para linking of a u substituent from each Cb¢CoCp
monomer), the splitting remains about the same as for
the isolated Cb¢CoCp, leaving the weakly coupled sys-
tem (3dxy type) as the ground state.

The examples given here offer important caveats con-
cerning the use of the TSA in cases of quasi-degenerate
systems (other examples arising either from spatial or
from spin effects have been noted in Refs. [46, 47, 53]). Of
particular note is the great variability in coupling strength
associatedwith the distinct nodal structure of the different
members of a quasi-degenerate set, a fact which may be
exploited for control of tunneling.

Comparison of calculated HDA distance dependence
with experiment

It was emphasized earlier that the distance dependence
of HDA, represented by the calculated b coefficients
(Eqs. 19, 20) in Table 1, is not necessarily the same as
the ‘‘b’’ obtained from the distance dependence of the
overall kET values. Within the weak-coupling (nonadi-
abatic) limit, as in Eq. (1), these differences may arise
from the distance dependence of DG� (Eq. 2) for rela-
tively short D/A separations (rDA<10–15 Å). At very
short separations (typically, rDA £ 5 Å) the nonadia-
batic framework, which underlies Eqs. (19) and (20),
may be inappropriate owing to strong D/A coupling.

For most of the cases represented in Table 1, exper-
imental data permit an estimation of b for HDA, either
from Mulliken–Hush analysis [25] of optical data or
Arrhenius analysis of thermal kinetic data [49, 50, 51].
The b results for the OV systems (0.2 Å)1 and greater)
are consistent with the calculated value and support a
nonadiabatic mechanism. This is also true for the OM
systems in the longer range of rDA values (10 Å and
greater) [49, 50, 51].

Electrochemical kinetic data for OPE systems
including 2–6 PE units, with either unsubstituted [55] or
alkoxy-substituted [56] phenylene moieties, yield b val-
ues (based on overall kET) spanning a range (0.4–
0.6 Å)1) which includes the calculated values for planar
(0.39 Å)1) and randomized (0.51 Å)1) spacer confor-
mations [43, 46, 47]. However, more recent [57] kinetic
measurements suggest that the rDA dependence of kET
for the OPE systems may not be fully monotonic, and
further mechanistic analysis seems to require a more
detailed understanding of the conformational distribu-
tions pertaining to the systems studied experimentally,
including the likely significant role of intermolecular
interactions in controlling the torsional angles within a
given OPE (see also Ref. [58]).

Turning now to the OPV systems, we note that the
experimental Arrhenius prefactors decay only weakly
out to around rDA=30 Å (the nominal b value is
0.1 Å)1 or less), thus suggesting a dynamical bottleneck
for the ET process outside of the TST framework (e.g.,
some diffusional mode involved in the redox process)
[51]. For these thermal ground-state processes, thermo-

Table 3. Splitting of 3dx2�y2 and 3dxy hole states for Fc and

(C4R4)Co(C5H5) (structure given in Fig. 4)

Hole statea Relative
energy (eV)b

Point
group

Fc 3dx2�y2 , 3dxy 0.00 D5

3dz2 0.48

(C4H4)Co(C5H5)
c 3dxy 0.00 Cs (C4v)

d

3dz2 0.27

3dx2�y2 0.33

(C4u4)Co(C5H5)
e 3dxy 0.00 C1 (C4)

f

3dx2�y2 0.18

aThe 3d-type hole states are based on a coordinate system where the
z-axis is perpendicular to the ring planes and where, for
(C4R4)Co(C5H5), the x- and y-axes are parallel to the diagonals of
the C4 ring. Thus the C4 carbons lie in the nodal planes of the 3dxy
orbital (Fig. 5)
bThe ground state and low-lying excited states were obtained from
separate direct self-consistent-field calculations
cFig. 4(R=H)
dLocal point group symmetry of the cyclobutadiene (Cb)Co moiety
eFig. 4(R=u); the four u substituents were arranged in a propeller-
like configuration with respect to the Cb ring, with Cb/u diherdral
angles taken as 35� [54]
fLocal point group symmetry of Cb¢Co moiety

Table 4. Quasi-degenerate hole states at tethered Fc and Cb¢Co–
cyclopentadiene (Cp) D and A sites

3d-hole typea HDA (cm)1)b Relative
energy (eV)b

[Fc OPE(1)Fc]+ 3dx2�y2 177 0.000

3dxy 2 0.058
[FcOPV(1)Fc]+ 3dx2�y2 140 0.000

3dxy 0.4 0.051
[(Cb¢CoCp)]- 3dxy 3.1 0.000
[(Cb¢CoCp)]+c

3dx2�y2 111 0.170

aDominant character of the calculated hole state, where z is the
long axis of the Fc and Cb¢CoCp units, and the x-axis is aligned
with the single bonds linking the D/A rings to the bridge. In the
3dxy hole states, the hole resides predominantly in an Fe (or Co)
orbital which mixes with the Cp (or Cb¢) molecular orbital bearing
a node on the carbon atom linked to the bridge (Fig. 5), thus
accounting for the very small HDA magnitudes
bBased onself-consistent-field/configuration interaction calcula-
tions and generalized Mulliken–Hush analysis, as described in the
text
cThe monomers are covalently linked by a biphenylene bridge
formed from adjacent phenyl substituents (one from eachCb¢
moiety) and assigned a dihedral angle of 35� (see also footnote e of
Table 3)
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dynamic data suggest tunneling gaps (D, as in Eq. 18)
large enough (around 1 eV and greater) to preclude a
sequential hopping mechanism, although such a mech-
anism has been invoked for photoinitiated ET kinetics
involving OPVs in which much smaller gaps (less than
0.1 eV) were estimated in some of the longer members
(n=3–5) of the homologous series [59].

Finally, some further comments about the saturated
spacers (OM) are warranted. Even though a nonadia-
batic mechanism for the longer oligomers is not in
doubt, with good agreement between calculated and
experimental estimates of b (around 1.0Å)1), the
experimental data indicate a falloff from linearity of the
logarithm of the Arrhenius prefactor for rDA ~ 10 Å.
For electronically saturated spacers, this is a surprising
result, once again suggesting that factors outside the
simple nonadiabatic TST framework may be controlling
the experimentally observed ET processes, including
possibly alteration of the self-assembled-monolayer film
structure [49].

In the foregoing, we have seen that calculated D/A
coupling and its distance dependence are consistent with
experimental charge-transfer data in a number of in-
stances. Nevertheless, other dynamical factors may be
crucial in determining overall kinetic mechanisms in
some cases.

Solvent contributions to non-Condon effects

The primary influence of solvent on ET kinetics is its
contribution to the activation free energy (e.g., as given
by the classical expression in Eq. 2) through fluctuations
in the low-frequency polarization modes of the medium.
These modes may also influence the electronic coupling
(i.e., HDA). The nature of such solvent-driven non-
Condon behavior has been discussed in the literature [4,
5, 6, 14, 15, 60, 61, 62], and we examine this topic in the
remainder of the present study. In addition to the CS ET
process introduced in Sect. 2 (Fig. 1), involving overall
neutral systems (DBA and D+BA)), we will also con-
sider the complementary charge shift (CSh) process,
DBA+ fi D+BA. Even if corresponding DBA and
DBA+ systems are isoelectronic, the respective ET
energetics may be quite distinct, for example, the ab-
sence of a D/A Coulombic term in the driving force
()DG0) for the CSh process [23].

Optical ET: absorption versus emission
for CSh in a polar medium

Matyushov and coworkers [14, 15] have emphasized that
inertial (low-frequency) modes may lead to pronounced
non-Condon ET behavior in polar solvents. As an
example of such an effect we consider optical CSh for a
DBA+ system in which the A+ moiety, an acridinium
cation, is linked by a p-phenylene spacer to an aniline D
group (Fig. 6). This molecular species is abbreviated as
ABPAC [9-(aminobiphenyl)-10-methylacridinium].
Charge transfer in this and related systems in polar sol-

vents has been studied by Jonker et al. [63] and Jones and
coworkers [64]. A full account of the ET energetics is of
course a major computational task, including the need to
consider the dependence of properties on torsion angles
(especially the h angles indicated in Fig. 6). Preliminary
results for the gas-phase systemusing ab initio and INDO/
s calculations have been reported by Rust et al. [28], and
additional calculations are underway [65]. Our current
objective is simply topresent some sample results basedon
a model which allows a comparison of the influence of
solvent polarity on vertical absorption and emission:

DBAþ �!hm
DþBA absorptionð Þ;

DþBA�!�hm
DBAþ emissionð Þ;

where DBA+ ” ABPAC. For this purpose we have
maintained a fixed ABPAC molecular structure (the
estimated ground+state structure determined from
AM1 [45] and universal force field (UFF [66]) calcula-
tions)1. The electronic structure calculations are based on
an extended AM1 Hamiltonian including a nonequilib-
rium continuum reaction field term Hne

RF so that in each
case (absorption or emission) the fast solvent modes (the
optical response controlled by �¥) are in equilibrium with
the final state in the vertical process, whereas the slow
modes (the inertial response governed by the effective
inertial dielectric susceptibility, proportional to �0)�¥)
are in equilibrium with the initial state. The reaction field
employed here [67] differs from the commonly used
polarized continuum models [68] in that it incorporates

Fig. 6. Structure of 9-(aminobiphenyl)-10-methylacridinium
(ABPAC) and definition of torsion angles h1–h3. As drawn, all
h=0�

1UFF coordinates for ABPAC were determined by J. Lappe and
R.J. Cave (private communication)
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distinct effective cavities for optical and inertial response
(the ‘‘frequency-resolved cavity model’’ [69]), and it is
formulated for the limiting case of fast solvent electronic
response time relative to that of the transferring charge of
the solute. This latter approach (quite similar to the BO
model of Kim and Hynes [70]) seems reasonable for the
present case, where the energy gap associated with the ET
process is considerably smaller than the charge-transfer
gaps controlling the solvent polarizability. It also has the
advantage of yielding initial and final states which are
orthogonal (for a fixed inertial polarization of the sol-
vent, as in a vertical process). Since we are only interested
in the solvent effect, the possibility of conformational
relaxation (e.g., via the h angles indicated in Fig. 6) in the
emitting state is not considered here. The fixed h values
used in the calculations (ground-state estimates) are 0�
(h1), 40� (h2), and 85� (h3). X-ray crystal structure data
for various aryl–acridinium species yields h3 values in the
range around 70±10� [71]. The results reported in Ta-
ble 5 and discussed later are based on AM1/CI including
the ground SCF configuration and around 40 CI basis
states obtained as single excitations from the ground
configuration.

The data in Table 5 probe the influence of the inertial
solvent response with respect to two ‘‘degrees of free-
dom’’: the columns reflect variation in �0 (for �¥ fixed at
1.8, a typical value for organic solvents), and each row
(for a given �0) samples two points along the solvent
reaction coordinate (the minimum free-energy points for
the initial and final states). The three �0 values selected
correspond to a nondipolar (�0 = �¥ = 1.8), a weakly
dipolar (�0=7, similar to the value for tetrahydrofuran),
and a strongly polar (�0=37.5, representing acetonitrile)
solvent. For each transition the calculated vertical en-
ergy gap (DE) and dipole moment shift (Dl) are given, as
well as the HDA value inferred from GMH analysis
within the TSA (found to be quite adequate according to
the criterion of Ref. [28]). These quantities were intro-
duced in connection with Eq. (16). The qualitative
trends in DE are in accord with the simple diabatic
Marcus expression, based on the assumption of linear
solute/medium coupling [4, 11],

DEabs;em ¼ k� DG0; ð22Þ

provided the dominant solvent dependence is due to k.
The solvent dependence of DG0 is expected to be smaller,
depending on the difference in access of the solvent to
the hole when it resides on the D and A sites. The
present calculations suggest that the final state (i.e., hole
on the aniline site) is more strongly solvated than the
initial state (acridinium hole site); i.e., DG0 for the CSh
process becomes less positive with increasing �0.

While Eq. (22) offers a useful guideline for expected
trends, we note that the current calculations, which yield
( implicitly) distinct intial and final state polarizabilities
(Da „ 0), are not subject to the limitation of global lin-
earity underlying Eq. (22). The consequences of Da „ 0
are discussed in Refs. [14, 15].

The results for HDA reveal appreciable non-Condon
behavior. For a given �0 „ �¥, HDA decreases as g
changes from the value for vertical absorption to that
for the emission (i.e., corresponding to equilibrium,
respectively, with the ground and CSh states). Of course
for �0= �¥, there is no inertial response (in the present
dipolar dielectric model), and thus the listed quantities
are the same for absorption and emission. The mono-
tonic trend of HDA as �0 increases (for fixed �¥) is
opposite for the absorption (increasing) and emission
(decreasing) processes, but is well correlated with the
associated dipole shifts (Dl). The larger Dl values
indicate tighter localization of the D and A states (the
dominant effect is found to be at the D-site), and it is
plausible that this would tend to reduce the magnitude
of the corresponding coupling element. As a result of
this variation of HDA with inertial solvent polarization,
the precise HDA value for a given ET process will depend
on the location along the reaction coordinate (g) perti-
nent to that particular process. This non-Condon influ-
ence of the inertial solvent modes is likely to be
enhanced by the state-dependent polarizability implicit
in the CI wavefunctions employed in the calculations.
Effects of this type have been considered in Ref. [60].

Non-Condon effects in superexchange tunneling

The important role of the tunneling gap, D, was noted
earlier (see Eqs. 18, 19). Obviously any fluctuation in D
can provide a contribution to non-Condon behavior of

Table 5. Calculated solvent contribution to vertical absorption and emission in 9-(aminobiphenyl)-10-methylacridinium. Results based on
vertical charge transfer, using estimated ground-state geometry (h1=0�, h2=40�, h3=85�; see Fig. 6 and text)

�0/�¥
a Absorption Emission

DE12 (eV) Dl12 (D) HDA (102 cm)1)b DE12 (eV) Dl12 (D) HDA (102 cm)1)b

1.0/1.0 2.8 31.8 5.4 2.8 31.8 5.4
1.8/1.8 2.6 39.3 3.7 2.6 39.3 3.7
7.0/1.8 2.8 37.8 4.2 1.9 41.7 2.8
37.5/1.8 3.0 36.8 4.9 1.7 42.3 2.7

aStatic and optical dielectric constants used in the reaction field calculations; the radial increment d [69] was assigned the mean value 1.8 Å
in all the reaction field calculations
bHDA estimates based on generalized Mulliken–Hush analysis in the framework of the two-state approximation (Eq. 16)
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HDA. While this potential role of thermal fluctuations
has long been appreciated, their energy scale (1 eV and
lower) may render such effects minor if the basic elec-
tronic gaps (D) are several electron volts in magnitude,
as expected for many DBA systems [4, 5, 6, 35, 72, 73],
especially those involving saturated organic spacers [37].
However, when the gaps themselves become of the order
of 1 eV (hole transport in DNA duplexes is a recent
example of potential interest [74]), the role of fluctuations
must be carefully evaluated. These effects have been
considered for various special cases in the literature,
including a model by Marcus and Sutin [4] using two
harmonic oscillator modes (see also the more general
analysis and the molecular dynamics results reported in
Ref. [73]). Here we present a general model, within the
framework of the original classical linear response model
of Marcus [11]. The main focus is on the effect due to
inertial solvent response, where additive partitioning of
energy quantities into site contributions is not generally
possible [75], but for completeness, molecular contribu-
tions (‘‘inner shell’’) are also included.

In particular, we wish to formulate D as a function of
progress along the ET reaction coordinate, g (Eq 9),
with primary interest in the gap at the transition state for
thermal ET ( where g=g�=0). Note that g refers to the
overall ET process and is distinct from the reaction
coordinate associated with the injection process (e.g., for
overall CS of the type DBA fi D+BA), the hole injec-
tion corresponds to DBA fi DB+A)). The current ap-
proach may be contrasted with simpler models in which
the energetics of all states are restricted to profiles along
a single common reaction coordinate [5, 6, 35, 72] (for a
general discussion of multiple reaction coordinates see
Ref. [76]). Furthermore, the gaps considered here differ
from the effective gaps defined [5, 35] in conjunction
with the Mulliken–Hush model [25].

In the case of quantized molecular modes, the clas-
sical approach employed here would require modifica-
tion. For example, the analysis could be applied to the
vibronically-resolved expression given in Eq. (13), in
which each vibronic component is governed by a com-
mon classical solvent reaction coordinate (Eq. 14b), but
with distinct expressions for effective coupling (Eq. 14a)
and driving force (Eq. 14c) for each v,w pair.

The expressions presented later are all based on the
following representation of a nonequilibrium solvation
free energy in the linear response framework [11]:

Gnon�eq q; q0ð Þ ¼ Geq qð Þ þ k Dqð Þ; ð23Þ

where Dq=q¢)q, and the fast (optical) and slow (iner-
tial) modes of the solvent are in equilibrium, respec-
tively, with solute charge densities q and q¢ For vertical
absorption or emission from solvent-equilibrated states,
the initial solute state determines q=q¢; after the tran-
sition, q becomes the final solute state charge density,
and q¢ remains fixed.

For a homogeneous solvent medium the classical
solvent reorganization energy may be represented as

kS ¼ 1=8pð Þ
Z

Vs

dV D Dq; e1ð Þ
�� ��2

.
e1 � D Dq; e0ð Þ

�� ��2
.

e0
� �

;

ð24Þ

where D is the electric displacement field and Vs is the
volume containing the solvent, and where spatial
locality has been assumed. Equation (24) represents the
general case in which D is a function of the dielectric
constant, in contrast to the common approximation
implicit in Eq. (5), in which such ‘‘image effects’’’are
neglected [77].

We now adopt the notation ksXY, where X and Y are
the sites on which the transferring charge is predomi-
nantly localized in a given ET step (represented by the
density shift Dq). Thus ksDA refers to the overall ET
process. Consideration of B-mediated tunneling later
will entail additional ks quantities (ksAB; ksDB, etc). For
the simple case of a point charge transferring between
the centers of spherical D and A sites, the familiar two-
sphere approximation of Marcus is given by [11]

ksDA ¼ Dqð Þ2 1=e1 � 1=e0ð Þ 1=2rD þ 1=2rA � 1=rDAð Þ;
ð25Þ

where Dq is the magnitude of the shift in the point charge
at each site in the ET process. Molecular (‘‘inner
sphere’’) ks, taken as additive with respect to D, B, and
A sites, will be denoted kinD, etc (cf., the discussion fol-
lowing Eq. 3). For convenience we use the dimensionless
reaction coordinate m for the overall ET process, related
to g (Eq. 9) by the following linear transformation

m ¼ kDA þ DG0
DA � g

� ��
2kDA; ð26Þ

where the initial and final diabatic minima correspond to
m=0 and m=1, and where kDA ¼ ksDA þ kinD þ kinA. If qi

and qf are the initial and final state solute charge den-
sities in the ET process, then for an arbitrary fluctuation
along the reaction coordinate, the corresponding q¢ in
Eq. (23) may be represented as

q0 ¼ qi þ m qf � qið Þ: ð27Þ

Exploiting Eqs. (23) and (27) yields very compact
expressions for Dv(m), where the superscript v is added
to emphasize the vertical nature of the tunneling gap.
The following expression applies to either CS or CSh
processes, and has been adapted to the HT case:

Dv mð Þ ¼ DG0
AB þ ksAB þ kinA þ kinB

� �

[0ð Þ
�m ksDA þ ksAB � ksDB þ 2kinA
� �

\0ð Þ;

ð28Þ

where the net negative sign of the contribution linear in
m is indicated.We summarize here the subscript notation
used for the various steps involved in the CS and CSh
hole-tunneling processes:
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CS=h : CSh=h :

DA: DBA ! DþBA� DA: DBAþ ! DþBA

AB: DBA ! DþBA� AB: DBAþ ! DBA

DB: DBþA� ! DþBA� DB: DBþA ! DþBA

A: A ! A� A: Aþ ! A

B: B ! Bþ B: B ! Bþ

For the analogous ET process (not considered here), one
simply makes the straightforward changes in the defi-
nition of the AB, DB, and B subscript notation [corre-
sponding for CS, respectively, to DBA fi D+B)A,
D+B)A fi D+BA), and B fi B), and with A replaced
by D (D fi D+), and with analogous changes made for
the CSh case], maintaining the compact additive form of
Eq. (28).

Equation (28) makes clear that relative to the ver-
tical gap at the initial state equilibrium (m=0), pro-
gress along the reaction coordinate toward the
transition state decreases the gap (within the ‘‘normal’’
Marcus regime [4]), since the coefficient of –m is posi-
tive (this is not analytically true, but is the case for
realistic estimates of the ks terms). In terms of the su-
perexchange model (see Eqs. 18, 19, 20) such a decrease
in gap will tend to enhance the tunneling and decrease
its decay rate (b). When the reference gap Dv(0) is
relatively small in magnitude (i.e., around 1 eV), the
enhancement due to thermal activation may be appre-
ciable. Note that at the ET transition state, my ¼
kDA þ DG0

DA

� ��
2kDA [11].

Tong et al. [78] have noted that from the point of
view of quantum chemistry, where calculated energies
for species in vacuo are readily available, it is convenient
to define Dv(m) relative to the corresponding vertical
vacuum gap (denoted here as Dvv). Expressions very
similar to that in Eq. (28) are obtained, but here some
distinctions between CS and CSh processes must be
made:

D v
CS=h mð Þ ¼ Dvv

CS=h þ DG0
AB

� �1

[0ð Þ \0ð Þ
�m ksDA þ ksAB � ksDB þ 2kinA
� �

\0ð Þ;

ð29Þ

Dv
CSh=h mð Þ ¼ Dvv

CSh=h þ DG0
AB

� �1 þ ksAB þ ksA � ksB
� �

[0ð Þ � 0ð Þ [0ð Þ
�m ksDA þ ksAB � ksDB þ 2kinA
� �

\0ð Þ;
ð30Þ

where G0
AB

� �1
is the contribution to DG0

AB due to
optical (electronic) solvation, and where the terms linear
in m are the same as in Eq (28).In Eq. (30) the quantity
ksA � ksB is equivalent to the inertial contribution to
DG0

AB. Like Eq. (28), Eqs. (29) and (30) pertain to HT,
but once again, adaptation to the electron tunneling case

is straightforward. For hole tunneling in CS, Dv(m) is
expected to be smaller than the Dvv reference, whereas
for CSh, a tradeoff between positive and negative terms
is revealed. In the special limiting case when all ksXY are
assumed to be additive with respect to site contributions
(ksXY ¼ ksX þ ksY; XY= D, B, or A) and also with all kX
equal so that kDA=2kA, and with neglect of G0

AB

� �1
,

Eq. (30) becomes (for m=m�=1/2, the transition state
value for thermoneutral ET)

Dv
CSh=h 1=2ð Þ ¼ Dvv

CS=h þ kDA=2� kinDA

�
2; ð31Þ

where, subject to the stated assumptions, all k terms are
expressed in terms of kDA.Thus the gap is increased by
the reorganization energy to the extent that ksDA ex-
ceeds kinDA (note that Dvv

CS=h includes a positive contri-
bution due to kinAB equal under the simplifying
assumptions adopted here to kinDA. An expression sim-
ilar to Eq. (31) was employed in Ref. [78].The forego-
ing results underscore the importance of obtaining
accurate estimates of solvent reorganization energies.
Recent efforts to evaluate ks for HT in DNA systems
on the basis of continuum-level formulations have re-
vealed the great sensitivity of ks magnitude to details of
the dielectric model [78, 79]. Equations (28), (29), and
(30) are general, requiring only that the states of the
transferring charge can be expressed in terms of the
appropriate diabatic charge densities (qD, qA, or qB,
where B is a particular site of the spacer), and
assuming linear coupling of solute and solvent. In
practice, the simple two-sphere model (Eq. 25) may
provide useful estimates of ks, if suitable values of the
dielectric constants and effective radii are available. In
complex inhomogeneous media (as, for example, in the
case of DNA [80, 81]), generalized continuum models
are available, but sensitivity to specification of dielec-
tric parameters remains an important issue [79].To
complement the analysis we note that considerable
perspective on the role of nuclear motion in D/A
coupling (including both solute and solvent modes) has
been provided by molecular level treatments [12, 61, 82,
83, 84, 85] combining electronic structure calculations
with molecular dynamics simulations and surface-hop-
ping trajectory techniques [85].

Summary

In this overview we have treated long-range electronic
coupling of local D and A sites (HDA) in the context of
thermal and optical ET, with special focus on formula-
tions amenable to practical computational implementa-
tion. The importance of choosing a suitably flexible
electronic state space for such computations has been
emphasized, and the sensitivity of HDA magnitudes with
respect to different types of nuclear coordinates (D/A
separation, rDA), torsion angles, and ET reaction coor-
dinates (including both discrete molecular and solvent
inertial contributions) has been considered in detail. The
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distance dependence of HDA ( represented by the mean
exponential decay coefficient b) has been evaluated for
homologous intramolecular DBA radical ion systems, in
which Fc or methylene D and A groups are linked by a
variety of organic spacers, both saturated and unsatu-
rated. These results have been shown to be in generally
good agreement with estimates based on experimental
kinetic and optical ET studies. Such comparisons are
complicated in some cases, however, owing to uncer-
tainty about torsion angles and overall kinetic mecha-
nisms in the systems studied experimentally.

The response of the magnitude of HDA to variations
in inertial medium polarization (i.e., non-Condon
behavior) has been investigated. Limited CI calculations
based on a nonequilibrium reaction field Hamiltonian in
the case of intramolecular ET between acridinium and
aniline-based D and A sites indicate appreciable sensi-
tivity to location along the solvent reaction coordinate
(inferred by comparison of coupling for vertical
absorption and emission) and to solvent polarity. This
sensitivity may be enhanced by the state-dependent
polarizability of the solute, as represented by the CI
wavefunctions employed in the calculations.

In the case of superexchange tunneling, the sensitivity
of the tunneling gap (D) to progress along the reaction
coordinate (including molecular as well as solvent con-
tributions) has been formulated in terms of a general
linear response framework. When the gap is relatively
small (i.e., of the order of the magnitude of reorgani-
zation energies), the corresponding sensitivity of HDA

(e.g., via Eq. 18) may be significant.
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